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SUMMARY

In this paper, a numerical investigation is presented to study the flow structures behind an axially
mounted center-body of a confined annular swirling flow. Based on the transient, axisymmetric
Navier–Stokes equations, the projection method is used to solve the pressure Poisson equation to retain
the equation of continuity. The velocity is then solved by using the explicit Adams–Bashforth scheme. By
this numerical algorithm, second-order accuracy in both time and space discretizations can be obtained.
Discussions on the computational length and computing efficiency are made. For the annular swirling
flow, the characteristics of the flow structures are dependent on two dimensionless parameters, the
Reynolds number Re, and the swirl number S. Several flow patterns can be obtained by this numerical
simulation. The lengths of the recirculation zone in various flow conditions are also calculated. It is
found that the higher the swirl number, the more complex and unstable the flow. The present
computational results are in reasonable agreement with those of the experiment obtained by LDA
measurements and smoke visualization. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A swirling flow is a flow with spiral motion in the tangential direction in addition to the axial
and radial directions. The use of a swirling flow from a swirl generator in a combustion
chamber can improve the flame stability by the formation of a toroidal recirculation zone
(Beer and Chigier [1]). The flame length can be reduced and the size of the combustion
chamber can be minimized. Moreover, the introduction of swirling motion to a jet flow can
lead to a higher ambient entrainment flow and enhance flow mixing. Many researchers have
conducted relative studies on the aerodynamic properties of swirling flow, e.g. Syred and Beer
[2] and Lilley [3].

For the effects of the center-body geometry on the flow structures, Taylor and Whitelaw [4]
studied the velocity characteristics behind various axisymmetric bluff bodies. They concluded
that the recirculation bubble was shorter and narrower for a flow with a 45° cone than with
a disk, and that a decrease of the blockage ratio would lengthen and narrow the recirculating
bubble. The effects of the blockage ratio were also investigated. Li and Tankin [5] carried out
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an experiment for isothermal and combusting flows with various axially aligned cylindrical
bluff bodies at the exit of an annular jet by a flow visualization technique. The variations of
recirculation length in the near-wake region behind the bluff body were discussed, and the
asymptotic solutions for the recirculation length were also derived. In general, the recirculating
length changed with the flow conditions and also the geometries of the bluff body.

Chigier and Beer [6] made measurements in an unconfined swirling annular jet, where the
degree of swirl was varied by various proportions of air introduced axially and tangentially
into the swirl generator. They concluded that a closed toroidal vortex was formed behind the
central bluff body due to the comparatively large subatmospheric pressure in the near-wake
region at sufficiently high degrees of swirl. Further, the strength and size of this vortex
increased as the swirl strength increased.

Regarding the effects of a confined boundary, Rhode et al. [7] investigated an annular
swirling jet with various swirling vane angles and different side-wall expansion angles. They
found that increasing the swirling vane angle provoked the existence of a central recirculation
bubble, and that this zone length was only slightly affected by the side-wall expansion angle.

For the formation of a central recirculation zone behind a center-body in weak and
intermediate swirl conditions, Escudier and Keller [8] mentioned that as the swirl strength was
increased, the axial–radial flow field did not change significantly until a certain critical swirl
was reached, and then an isolated axisymmetric recirculation zone appeared in the downstream
region. As the degree of swirl was further increased, the recirculation zone moved upstream.
The so-called isolated recirculation zone meant the location of vortex breakdown, which is a
vortex flow with abrupt and drastic changes in the axial velocity component. The characteris-
tics of vortex breakdown are commonly recognized as the formation of a stagnation point on
the axis and a sudden widening of the vortex core due to a region of reversed axial flow. Some
observations of the vortex breakdown phenomenon were presented by Harvey [9] and
Sarpkaya [10]. Shtern et al. [11] conducted theoretical studies and simulations on the vortex
breakdown phenomenon and gave several examples of applications based on an analytical
solution of the Navier–Stokes equations.

The parameter to characterize the swirl strength of a swirling flow is a very important
consideration. Sheen et al. [12] made an experimental investigation by using a radial-type swirl
generator, and concluded that the swirl number was dependent on the vane angle as well as the
Reynolds number, especially in the laminar flow regime. A correlation for the swirl number
with various Reynolds numbers was derived.

Concerning the effects of the axially aligned center-body on the flow structure of a confined
annular flow, Sheen et al. [13] carried out an experiment for a non-swirling annular flow over
an axisymmetric sudden expansion. Four different flow patterns were observed under various
Reynolds number conditions. Bifurcation of flow structure in the processes as the Reynolds
number was either increased or decreased was also reported.

The characteristics of the recirculation zone behind the center-body for an annular swirling
flow were experimentally investigated by Sheen et al. [14] with visual observation and LDA
measurement techniques. By using the parameters of the swirl number S, and the Reynolds
number Re, seven different flow patterns were classified. They were open-top toroid, closed
toroid, vortex-shedding, shear layer shedding, transition, prepenetration, penetration, vortex
breakdown and attachment. Characteristics of the flow modes in (S, Re) domain were
thoroughly investigated. A unified analytical expression was derived for the recirculation
lengths in all flow conditions and the predictions were in reasonable agreement with the
experimental results.
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In this paper, a numerical scheme for incompressible axisymmetric flow is proposed to
simulate the flow structures of a confined annular swirling flow. The geometry of the flow
field, the testing flow conditions and the inflow boundary conditions are adopted from the
experiment of Sheen et al. [14]. A second-order-accurate finite difference method is applied to
solve the axisymmetric Navier–Stokes equations. Several numerical simulations are carried out
to investigate various flow conditions, including both the non-swirling flow (S=0) and the
swirling flow (S\0) in the laminar flow regime. Comparisons of the computational results
with the experimental data are also made.

Since the present numerical scheme is based on the assumption of axisymmetry, the
simulations will be restricted to axisymmetric cases of the swirling flows. Consequently, such
three-dimensional flow patterns as vortex shedding, open-top toroid, transition, etc. observed
experimentally by Sheen et al. [14] could not be predicted by this numerical scheme. A further
simulation model based on a three-dimensional numerical scheme is needed to obtain 3D flow
structures.

2. FORMULATIONS OF THE PROBLEM

The basis of the present study is the experiments conducted by Sheen et al. [14] with the test
set-up as shown in Figure 1. The air stream passed through a settling chamber into a
16-guide-vane swirl generator. The swirling airflow was then sent to the test section through an
annulus. The annular airflow pipe had an inner diameter di of 21.7 mm and an outer diameter
do of 45.3 mm. The confined boundary was a sudden expansion plexiglass tube with an inner
diameter De of 130 mm, which was placed at the exit of the annular pipe. The length of the
confined tube used in the experiment was 1.2 m. The computational domain is also shown in
Figure 1. The computational length L in the axial direction for numerical simulation is chosen
to be shorter than that of the experiment in order to reduce the computing time. Several
computational lengths are also used in this study for computing efficiency.

2.1. Go6erning equations

The governing equations, including the continuity equation and the Navier–Stokes equa-
tions, in cylindrical co-ordinates for an axisymmetric, incompressible, swirling flow can be
expressed in dimensionless form as

Figure 1. Schematic diagram of the radial-type swirl generator (Sheen et al. [14]), the test section, and the
computational domain.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 791–810 (1999)
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where r is the radial, u is the azimuthal, z is the axial co-ordinate, u, 6, w are the velocities in
r-, u-, z-components respectively, t is time, p is the dynamic pressure and
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is the axisymmetric Laplacian operator. The Reynolds number is defined by Re=w̄(do−di)/n,
where w̄ is the volumetric average axial velocity of the inflow, and n is the kinematic viscosity
of the air. The variables are non-dimensionalized by using the hydraulic diameter of the
annulus, dh=do−di, the mean axial velocity, w̄, and the pressure coefficient, rw̄2.

2.2. Boundary conditions

The inlet velocity profiles, which include the axial, radial and azimuthal components, are
based on the experimental data of Sheen et al. [14]. These results were obtained from LDA
measurements. It was found that the swirl strength was strongly dependent on the Reynolds
number as well as on the guide-vane angle under low Reynolds number conditions. At the
symmetric axis, zero radial and azimuthal velocity and zero-gradient condition for the axial
velocity are imposed. No-slip boundary conditions are applied for the confined wall boundary.
At the outlet of the test section, the axial velocity can be determined from the overall mass
conservation and the linearized convective outflow boundary condition [15]. The boundary
conditions are listed as follows:

(i) Inflow boundary condition

u, 6, w are given on z=0, 05r5De/2dh. (5)

(ii) Symmetric boundary condition on the center axis

u=6=
(w
(r

=0 on r=0, 05z5L/dh. (6)

(iii) No-slip boundary condition on the confined pipe wall

u=6=w=0 on r=De/2dh, 05z5L/dh. (7)

(iv) Outflow boundary condition

(w
(t

+w̄
(w
(z

=0 on z=L/dh, (8)

where L is the computational length in the axial direction. Figure 2 gives the schematic
diagram of the flow field in cylindrical co-ordinates and the corresponding boundary
conditions.
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Figure 2. Schematic diagram of the flow field in cylindrical co-ordinates and the corresponding boundary conditions.

2.3. Numerical scheme

The primitive variables (u, 6, w, p) formulation is used to solve the governing Navier–Stokes
equations. The marker and cell (MAC) staggered computational grid system [16] is adopted to
discretize the partial differential equations. The projection method is applied to obtain the
pressure Poisson equation such that the equation of continuity can be satisfied automatically
[17]. The velocities are then solved by an explicit Adams–Bashforth scheme with central
differencing in spatial discretization. Therefore, a second-order-accurate numerical solution in
both time and space calculation can be obtained.

2.3.1. Explicit Adams–Bashforth scheme for 6elocities. From Equations (2)–(4) and using the
explicit Adams–Bashforth scheme, the discretized momentum equations can be derived as
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where dr, dz, d z
2 are the differencing operators, dr( fi, j)= fi+1/2, j− fi−1/2, j and dz( fi, j)=

fi, j+1/2− fi, j−1/2 are the first derivatives, d z
2( fi, j)= fi, j+1−2fi, j+ fi, j−1 is the second derivative

based on the central difference scheme, and Dr, Dz are the grid sizes in the r-, z-directions. The
MAC staggered grid system, as depicted in Figure 3, is used in the numerical computation.

2.3.2. Projection method for pressure. Taking divergence to Equations (9) and (11), one can
obtain the pressure Poisson equation�1

r
dr
Dr

�
r

dr
Dr
�

+
d z

2

Dz2

n
pn+1=

1
r

dr
Dr

�
r
�un

Dt
− f n�n+

dz
Dz

�wn

Dt
−hn� (12)

with the Neumann boundary conditions as follows:

dr
Dr

pn+1= −
�un+1−un

Dt
+ f n� on r=0, De/2dh, (13)

dz
Dz

pn+1= −
�wn+1−wn

Dt
+hn� on z=0, L/dh. (14)

The continuity equation (1) is thereby satisfied when the pressure pn+1 is solved from the
above Poisson equation (12) with the Neumann boundary conditions (13) and (14). There is
only one unknown on the boundary condition (14), namely wn+1 on the outflow boundary
z=L/dh. An iteration procedure is applied to solve the pressure and velocity fields until the
pressure and velocity converge in each time step [18]. An innovative method to solve the
outflow velocity wn+1 is applied in this study, which is called the linearized convective outflow
boundary condition. Using this method, the flow properties, which transports downstream to
the pipe exit plane by the average velocity w̄, are taken into consideration. The outflow
velocity wn+1 can then be calculated from (8).

Another advantage of using this outflow boundary condition is that the length of the
computational domain in the axial direction can be reduced significantly. Therefore, the
computing efficiency is increased considerably. The effects of the length for the computational
domain will be discussed later.

Figure 3. The MAC staggered grid system for the numerical model.
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When the velocity wn+1 on the outflow boundary is obtained, the pressure field pn+1 can
be solved from Equations (12)–(14). Direct computation, based on the fast Fourier transform
(FFT) and a tridiagonal matrix algorithm (TDMA), is employed to obtain pn+1 instead of
using the iteration method, e.g. successive over relaxation (SOR) method. The following gives
a detailed description for this algorithm.

The discretized differencing equation (12) in the z-direction at j=1/2 point (first grid point
in the z-direction, see Figure 3) can be written as

· · ·+
1
Dz

�dz
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From (14), we have
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i+1/2,0

. (16)

From (15) and (16), we can let hn=0 and (dz/Dz)p=0 on the boundary z=0. The remaining
three boundary conditions in (13) and (14) can be processed by using the same argument. If
we let f n=0 on r=0 and r=De/2dh; hn=0 on z=0 and L/dh, then the pressure Poisson
equation and the boundary conditions can be rewritten as�1

r
dr
Dr

�
r

dr
Dr
�

+
dz2

Dz2

n
pn+1=Rn, (17)

dr
Dr

pn+1=0 on r=0, De/2dh, (18)

dz
Dz

pn+1=0 on z=0, L/dh (19)

Hence pn+1 can be solved from Equations (17)–(19) by using the FFT and a TDMA. Let

pi+1/2, j+1/2
n+1 (r, z)= %

N−1

k=0

ak(r) cos kpzj+1/2, j=0, 1, 2, . . . , N−1, (20)

then the pressure pn+1 will satisfy the boundary conditions (19).
For (17), Rn is expanded by using Fourier cosine series

Ri+1/2, j+1/2
n (r, z)= %

N−1

k=0

bk(r) cos kpzj+1/2, j=0, 1, 2, . . . , N−1. (21)

Substituting Equations (20) and (21) into (17), we have<
1
r

dr
Dr

�
r

dr
Dr
�

−
4 sin2 kpDz

2
Dz2

=
ak(r)=bk(r), k=0, 1, . . . , N−1, (22)

dr
Dr

ak(r)=0 on r=0, De/2dh. (23)

In brief, the numerical procedures for solving the pressure field are summarized as follows
(Young and Liao [19])

(i) solve bk(r) from (21) by using the FFT,
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(ii) from (22) and (23), ak(r) can be calculated, which is a tridiagonal matrix system, and can
be easily solved by the conventional equation solver,

(iii) the pressure pn+1 is obtained from (20) by using the inverse FFT.

3. RESULTS AND DISCUSSION

As mentioned in Sheen et al. [14], the controlled parameters for the flow structure of a
confined annular swirling flow included the Reynolds number Re, and the swirl number S. The
swirl strength was adjusted mainly by varying the vane angle f of the guide-vane cascade in
the radial-type swirler (see Figure 1). The swirl number S is defined to be the ratio of the axial
flux of angular momentum to the axial flux of axial momentum, as was originally proposed by
Chigier and Beer [6]

S=

& R

0

w6r2 dr

R
& R

0

w2r dr
. (24)

Based on the experimental results, Sheen et al. [12] further proposed a correlation for the swirl
number S for the annular swirling flow given as

S=0.75
6̄

w̄
, (25)

since the swirl number S was linearly proportional to the ratio of volumetric mean azimuthal
to axial velocity, where 6̄ is the volumetric azimuthal velocity at the annulus exit. In this study,
the results of numerical simulation are in good agreement by using either (24) or (25).

3.1. Model 6erification

Second-order accuracy in both time and space discretization can be obtained by using the
proposed numerical scheme as mentioned before. Furthermore, the time-dependent transient
solution can be solved by this scheme. As far as the steady state solution is concerned,
numerical computations can be executed until the whole field reaches a steady state.

In order to compare the numerical solutions with the experimental results, only the steady
state solutions are used for model verification. A uniform grid system is used in this study since
the FFT algorithm is applied. This computation employs 128×256 grid points for the flow
field study. In this simulation, the confined pipe diameter De is 130 mm, the computational
pipe length L is chosen to be 226.5 mm, Dr=0.02, Dz=0.04, and the time step Dt=0.01.
Since the computational length L is very short, which is only about 5do, and if the initial
condition of the whole field is set as motionless fluid, the calculation will diverge for higher
Reynolds number conditions, e.g. Re]600. Under this circumstance, the computational length
L should be increased. This leads to a considerable increase in the computer memory and
computing time. However, the above mentioned problem can be improved by employing the
following method so that the steady state solutions can be obtained for the flow with the
Reynolds number as high as 1900.

The computation is started with motionless fluid in the whole fields initially and with
Re=100 and S=0. As the steady state solution is reached, the Reynolds number is then
increased to Re=200 and the same computation is repeated. Steady state condition is

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 791–810 (1999)
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Figure 4. Relationship between the length of the central recirculation bubble behind the center-body and the Reynolds
number, Re.

considered to be reached when the root mean square residues of the accelerations, (u/(t,
(6/(t and (w/(t, are less than 10−4. The increment of the Reynolds number for each
computation is 100. For the swirling flow cases, the swirl number S is set to 0 initially. The
increment of the swirl number for each computation is about 0.05. By this numerical
procedure, the flow simulation can be executed to as high as Re=1900. For the non-swirling
flow, the computational results for the relationship between the recirculation length Lr behind
the center-body and the Reynolds number Re is shown in Figure 4. It is found that the trend
of the computational results is in general agreement with the experimental data. The values of
the calculated results deviate from the experiment results when the Reynolds number is low.
However, as the Reynolds number is increased, the solutions are in better agreement with the
experiment data.

Comparisons of the flow pattern between the numerical and the experimental results for
both the non-swirling and the swirling flow conditions are made for Re=1265. Figure 5 gives
the steady state streamlines for Re=1265 and S=0. Under this flow condition, the flow

Figure 5. Comparison of the steady state streamlines for Re=1265 and S=0; (a) experimental data of Sheen et al.
[14], (b) computational results.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 791–810 (1999)
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Figure 6. Comparison of the steady state streamlines for Re=1265 and S=0.12; (a) experimental data of Sheen et
al. [14], (b) computational results.

pattern was called vortex-shedding flow regime by Sheen et al. [14]. Physically, this flow is
asymmetric and unsteady in nature, vortex-shedding from the central recirculation bubble was
observed. The vorticity is shed from the annular vortex behind the center-body, in such a form
as a succession of distorted vortex loops that are not symmetric about the central axis. The free
separation surface of the central recirculation bubble is thus quite unstable. In Figure 5(a), the
time mean averaged streamlines for the experimental results are depicted. For the steady state
solutions, only a toroidal recirculation bubble behind the center-body is obtained, as shown in
Figure 5(b).

For the annular swirling flow cases, the inflow boundary conditions (5) are changed with the
addition of the azimuthal velocity component 6. Figure 6 illustrates the results from the
experiments and the steady state streamlines from the computations for Re=1265 and
S=0.12. This flow pattern was called the penetration by Sheen et al. [14]. In this flow regime,
an annular vortex and an inverted triangular zone both exist in the recirculation zone. As the
swirling flow has an effect of stabilizing the central recirculation zone, the free separation
surface of the recirculation bubble becomes more stable for a swirling flow than that of a
non-swirling flow. The computational results are in better agreement with the experimental
data than in the non-swirling case.

For the higher swirl number conditions, an isolated recirculation zone (or the so-called
vortex breakdown) can be obtained downstream the central recirculation bubble. Figure 7
gives the steady state solutions of the u–w vectors and the streamlines for Re=1265 and
S=0.23. Sheen et al. [14] referred to this flow regime as vortex breakdown. The axial velocities
near the recirculation bubble are in a jet-like form. While near the vortex breakdown, the axial
velocity profiles become wake-like. The computational results are in agreement with the
experimental ones. The recirculation length Lr decreases as the swirl number is increased.
Moreover, the location of the vortex breakdown region moves upstream as the swirl strength
is increased.

Further, as the swirl number is increased to a critical value, the isolated recirculation zone
finally attaches to the apex of the central recirculation bubble behind the center-body. This
flow regime was called attachment and the critical values of the swirl number can be found in
Sheen et al. [14]. The flow structure for the attachment regime becomes very unstable. Since
the flow structure becomes very complex and unstable, under some flow conditions, the steady
state solution could not be obtained and much longer computing time is needed to have a
steady state solution even if it exists.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 791–810 (1999)
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Figure 7. Comparison of the steady state u–w vectors and the streamlines for Re=1265 and S=0.23; (a), (b)
experimental data of Sheen et al. [14]; (c), (d) computational results.

3.2. Transient solution of flow for Re=300

To investigate the transient phenomena of the flow structure for the lower Reynolds number
conditions, computations of two cases are carried out. One is a non-swirling flow with
Re=300, S=0, and the other one is a swirling flow with Re=300, S=0.3. In order to
observe the developing processes of the inflow, the computational length L is increased to
543.6 mm, or L=12 do. A 128×384 grid system is used and Dr=0.02, Dz=0.06, the time
step Dt=0.01, and with motionless fluid initially.

A series of time evolution flow structure with the computed streamlines for the case of
Re=300 and S=0 is shown in Figure 8. At the initial time step, a central recirculation bubble
behind the center-body and a vortex ring behind the sudden expansion can be observed
simultaneously near the inflow plane. The vortex ring moves downstream as time is increased
and can be regarded as the flow front. A second vortex ring near the corner region is induced
as the original vortex moves downstream. As time is increased, both vortices are stretched in
the axial direction. When the flow front passes through the outflow boundary, the whole field
develops gradually to steady state when t=121.36. During the developing period, a weak
corner vortex can be observed behind the expansion step. The corner vortex finally disappears

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 791–810 (1999)
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Figure 8. The transient solutions of the streamlines for Re=300 and S=0.
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when the flow reaches a steady state. However, the size of the central recirculation zone
remains almost constant during this transient period. Further, since the central recirculation
bubble is small in size, with an order of the diameter of the center-body di, the corner
recirculation length is comparatively large, as was mentioned by Sheen et al. [14].

Figure 9 shows the transient solutions for a swirling flow condition with Re=300 and
S=0.3. As seen in this figure, the transient process of the flow structure of a swirling flow is
quite different from that of a non-swirling case and becomes much more complicated and
unstable. At the initial time step, the central recirculation bubble is much larger than that in
a non-swirling flow. Further, the size of the central recirculation bubble is increased as time is
increased. Similar to the last case, a vortex ring around the central recirculation bubble is also
formed initially. This annular vortex moves downstream as time is increased. However, the
propagation speed of this vortex is slower than in a non-swirling case. The central recirculation
bubble grows and stretches in the axial direction as time is further increased. As the steady
state is reached, the central recirculation zone becomes much larger than in other flow regimes.
The steady state solution is obtained until t=497.85, about four times longer than in the
non-swirling flow case. The flow pattern of this flow condition is attachment as mentioned in
the last section. For this flow regime, the isolated recirculation zone (vortex breakdown) joins
the central recirculation bubble to form a large central recirculation zone that leads to a small
corner recirculation zone behind the sudden expansion. The flow regime of attachment, for the
flow condition of Re=300 and S=0.3, obtained by this numerical model is different from
that observed experimentally. The reason for this discrepancy may be attributed to the
different physical conditions in the simulation and the experiment, such as velocity fluctua-
tions, inlet velocities and flow disturbances, etc.

Figure 10(a) depicts the time history for the root mean square values of the acceleration
(w/(t for the last two cases, Re=300 and S=0; Re=300 and S=0.3. The local velocity w
at the location of (0.75, 3.13) for both cases is shown in Figure 10(b). For the non-swirling
case, the solutions can converge to steady state in shorter time than the swirling flow case.
Moreover, the flow structure in the swirling flow is more complex and unstable than in the
non-swirl case as can be seen in this figure.

3.3. The influence of computational length

For the effects of the computational length on the numerical results, Figure 11 gives the
results of the steady state streamlines for a non-swirling flow case, Re=630 and S=0. Two
computational lengths are chosen for the numerical simulation, L=6do and L=12do. With
the same mesh size, as the computational length is increased twice, the grid points are
accordingly increased from 128×256 to 128×512. Therefore, the computational time and the
required memory will be doubled. As shown in this figure, the results from both calculations
are nearly the same for the whole flow field. The use of the outflow boundary condition in this
numerical simulation has a significant effect on reducing the required computational length
and leads to an increase in computing efficiency. Similar results are also obtained for the
simulations of other flow cases.

3.4. The influence of swirl number

The effects of the swirl number on the confined annular flow are investigated for the case
of Re=630 with the swirl number S ranging from 0 to 0.25. Under these flow conditions, the
flow regimes will include vortex shedding, transition, prepenetration, penetration, and vortex
breakdown as indicated by Sheen et al. [14]. The introduction of swirling motion into the
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Figure 9. The transient solutions of the streamlines for Re=300 and S=0.3.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 791–810 (1999)



CONFINED ANNULAR SWIRLING FLOW 805

Figure 9 (Continued)
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annular flow causes the vortex shedding from the central recirculation bubble to disappear
when the flow is in the transition region. The central recirculation zone behind the center-body
becomes stable when the flow regime changes from the transition to the penetration region.
Moreover, the length of the central recirculation bubble is changed under the influence of the
swirling flow. When S is increased to be larger than 0.1, the flow is in the penetration region,
the fluid moves downstream in the central region of the recirculation bubble and passes
through the reicrculation zone. The accumulated fluid in the bubble is carried outward, and
this phenomenon results in the recirculation length becoming shorter as the swirl number is
increased.

For the numerical simulation, a 128×512 grid system, with Dr=0.022, Dz=0.045, and the
time step Dt=0.01, is used for the computations. The initial conditions for these computations
are chosen to be motionless fluid. The calculation begins with Re=630 and S=0. As the
steady state solution is obtained, the swirl effect is added to the flow with an increment of the
swirl number S being 0.05 in every computation. The results for the relationship between the
length of the central recirculation bubble behind the center-body and the swirl number are
depicted in Figure 12. The computational results are in good agreement with the experimental
data.

Figure 13 gives a series of the transient flow structures for the flow with Re=630 and
S=0.25. The flow pattern is called vortex breakdown. The initial condition for this computa-
tion is chosen to be the steady state solution for Re=630 and S=0. The swirl effect of

Figure 10. (a) Time history of the root mean square values of the acceleration (w/(t, (b) local velocity w at (0.75, 3.13)
for Re=300 and S=0; Re=300 and S=0.3.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 29: 791–810 (1999)



CONFINED ANNULAR SWIRLING FLOW 807

Figure 11. Comparison of the computational length for Re=630 and S=0; (a) L=6do (b) L=12do.

S=0.25 is then abruptly added into the inflow boundary condition. For the vortex-breakdown
flow regime, an isolated recirculation zone appears downstream from the central recirculation
zone when the swirl number reaches a critical value (e.g. S=0.18 when Re=630). Two pairs
of vortex cells in the central recirculation zone can be observed (also see Figure 7). The
secondary annular vortex with opposite vorticity is generated between the primary annular

Figure 12. The relationship between the recirculation length behind the center-body and the swirl number S for
Re=630.
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Figure 13. The transient solutions of the flow structure in vortex-breakdown flow regime for Re=630 and S=0.25.
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vortex and the base surface of the center-body. Furthermore, vortex breakdown occurs
downstream. The stagnation point of the vortex breakdown moves upstream as the swirl
number is increased. As shown in this figure, the flow structure becomes much more
complicated. More computing time is needed to obtain the solutions. The size of the central
recirculation zone decreases as the swirl number is increased. This phenomenon leads to a
larger corner recirculation zone than in the attachment flow regime (see Figure 9).

4. CONCLUSIONS

A numerical simulation is proposed to investigate the flow structures of a confined annular
swirling flow in the laminar flow regime. An explicit Adams–Bashforth scheme for momentum
equations and the projection method are used to obtain the pressure Poisson equation so that
the continuity equation can be satisfied automatically. The pressure Poisson equation is then
solved directly by using the FFT and TDMA. For this study, the test section and the inflow
boundary condition are taken from the experiments. As the linearized convective outflow
boundary conditions are imposed, the required computational length in this numerical
simulation is considerably reduced. Second-order-accurate solutions in both time and space
discretizations can be obtained by this proposed numerical method. The most significant
advantage of this numerical scheme is to avoid the time-consuming iteration processes for
solving the pressure and the velocity fields. Therefore, a more efficient numerical scheme is
obtained.

In this study, several flow cases are investigated. The computational results are in good
agreement with the experimental data in general. Various flow patterns, based on the
parameters of the Reynolds number and the swirl number, can be obtained by this numerical
simulation, e.g. closed toroid, prepenetration, penetration, vortex breakdown, attachment.
Furthermore, it is found that the flow structure of a swirling flow is more complex and
unstable than that of a non-swirling flow. The central recirculation length increases with the
Reynolds number for a non-swirling flow. The central recirculation zone remains compara-
tively small in the flow regimes other than the attachment regime. This result leads to a
relatively large corner recirculation zone behind the expansion step. In the attachment flow
regime, the central recirculation zone joins the isolated recirculation zone and results in a small
corner recirculation zone. Moreover, the swirling motion has an effect on reducing the length
of the central recirculation bubble.

It is clear that the flow structures of an annular swirling flow are very complex as indicated
in the experiment of Sheen et al. [14] and in this numerical investigation. Further studies on the
flow structures of other flow regimes by using a three-dimensional numerical model [20] and
the transient process of the unsteady flow phenomenon are in progress.
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APPENDIX A. NOMENCLATURE

hydraulic diameter of the annulus, dh=do−didh

inner diameter of the annulusdi
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outer diameter of the annulusdo

diameter of the confined pipeDe

length of the confined pipeL
length of the central recirculation bubbleLr

pressurep
radial co-ordinater
Reynolds numberRe
swirl numberS
timet
radial velocityu
azimuthal velocity6
volumetric mean azimuthal velocity6̄
axial velocityw
volumetric mean axial velocityw̄
axial co-ordinatez

r density
f guide-vane angle

azimuthal co-ordinateu

n kinematic viscosity
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